@article{zbinden2024selection, title={On the selection and effectiveness of pseudo-absences for species distribution modeling with deep learning}, author={Zbinden, Robin and van Tiel, Nina and Kellenberger, Benjamin and Hughes, Lloyd and Tuia, Devis}, journal={Ecological Informatics}, volume={81}, pages={102623}, year={2024}, publisher={Elsevier} }
@article{russwurm2024meta, title={Meta-learning to address diverse Earth observation problems across resolutions}, author={Ru{\ss}wurm, Marc and Wang, Sherrie and Kellenberger, Benjamin and Roscher, Ribana and Tuia, Devis}, journal={Communications Earth \& Environment}, volume={5}, number={1}, pages={37}, year={2024}, publisher={Nature Publishing Group UK London} }
@article{ title={Perspectives in Machine Learning for Wildlife Conservation}, author={Tuia, Devis and Kellenberger, Benjamin and Beery, Sara and Costelloe, Blair R and Zuffi, Silvia and Risse, Benjamin and Mathis, Alexander and Mathis, Mackenzie W and van Langevelde, Frank and Burghardt, Tilo and Kays, Roland and Klinck, Holger and Wikelski, Martin and Couzin, Iain D and van Horn, Grant and Crofoot, Margaret C and Stewart, Charles V and Berger-Wolf, Tanya}, journal={Nature Communications}, volume={13}, issue={792}, year={2022}, publisher={Nature Publishing Group} }
@article{ title={Counting using deep learning regression gives value to ecological surveys}, author={Hoekendijk, Jeroen and Kellenberger, Benjamin and Aarts, Geert and Brasseur, Sophie and Poiesz, Suzanne SH and Tuia, Devis}, journal={Scientific reports}, volume={11}, number={1}, year={2021}, publisher={Nature Publishing Group} }
@inbook{ chapter={Deep Domain Adaptation in Earth Observation}, author={Kellenberger, Benjamin and Tasar, Onur and Bhushan Damodaran, Bharath and Courty, Nicolas and Tuia, Devis}, title={Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences}, editor={Camps-Valls, Gustau and Tuia, Devis and Zhu, Xiao Xiang and Reichstein, Markus}, chapter={7}, pages={90--104}, year={2021}, doi={https://doi.org/10.1002/9781119646181.ch7}, url={https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119646181.ch7}, eprint={https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119646181.ch7}, publisher={John Wiley & Sons, Ltd}, isbn={9781119646181}, }
@article{ title={21 000 birds in 4.5 h: efficient large-scale seabird detection with machine learning}, author={Kellenberger, Benjamin and Veen, Thor and Folmer, Eelke and Tuia, Devis}, journal={Remote Sensing in Ecology and Conservation}, year={2021}, publisher={Wiley Online Library} }
@article{ title={{AIDE}: Accelerating image-based ecological surveys with interactive machine learning}, author={Kellenberger, Benjamin and Tuia, Devis and Morris, Dan}, journal={Methods in Ecology and Evolution}, volume={11}, number={12}, pages={1716--1727}, year={2020}, publisher={Wiley Online Library} }
@inproceedings{ title={Half a Percent of Labels is Enough: Efficient Animal Detection in {UAV} Imagery using Deep {CNNs} and Active Learning}, author={Kellenberger, Benjamin and Marcos, Diego and Lobry, Sylvain and Tuia, Devis}, booktitle={IEEE Transactions on Geoscience and Remote Sensing}, year={2019} }
@inproceedings{ title={When a Few Clicks Make All the Difference: Improving Weakly-Supervised Wildlife Detection in {UAV} Images}, author={Kellenberger, Benjamin and Marcos, Diego and Tuia, Devis}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops}, year={2019} }
@inproceedings{ title={DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation}, author={Bhushan Damodaran, Bharath and Kellenberger, Benjamin and Flamary, R{\'e}mi and Tuia, Devis and Courty, Nicolas}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, pages={447--463}, year={2018} }
@article{ title={Detecting mammals in {UAV} images: Best practices to address a substantially imbalanced dataset with deep learning}, author={Kellenberger, Benjamin and Marcos, Diego and Tuia, Devis}, journal={Remote sensing of environment}, volume={216}, pages={139--153}, year={2018}, publisher={Elsevier} }
@inproceedings{ title={Learning deep structured active contours end-to-end}, author={Marcos, Diego and Tuia, Devis and Kellenberger, Benjamin and Zhang, Lisa and Bai, Min and Liao, Renjie and Urtasun, Raquel}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={8877--8885}, year={2018} }
@article{ title={Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models}, author={Marcos, Diego and Volpi, Michele and Kellenberger, Benjamin and Tuia, Devis}, journal={ISPRS journal of photogrammetry and remote sensing}, volume={145}, pages={96--107}, year={2018}, publisher={Elsevier} }